MathExcel Worksheet N: Taylor Polynomials and Review

1. Use Taylor polynomials with $a=0$ to approximate $\frac{1}{\sqrt[10]{e}}$ to five decimal places. Hint: Use a third degree Taylor polynomial.
2. (a) Use Taylor polynomials with $a=0$ to approximate $\int_{0}^{1} \sin \left(x^{4}\right) d x$ to five decimal places. Hint: Start with the fifth degree Taylor polynomial for $\sin (x)$ at $a=0$.
(b) Can you find an antiderivative for this integrand? Why or why not?
3. Use Taylor polynomials with $a=0$ to approximate $\sin (1)$ to four decimal places.
4. (a) Use Taylor polynomials with $a=0$ to approximate $\int_{0}^{0.5} x^{2} e^{-x^{2}} d x$ to two decimal places. Hint: Use a fourth degree Taylor polynomial for $x^{2} e^{-x^{2}}$.
(b) Can you find an antiderivative for this integrand? Why or why not?
5. If $f(x)=\left(1+x^{5}\right)^{1000}$, what are $f^{(273)}(0), f^{(999)}(0)$, and $f^{(824)}(0)$? Is $f^{(1000)}(0)=0$?

Review Problems

6. Suppose $f(x)=x^{2}[g(x)]^{3}, g(4)=2$, and $g^{\prime}(4)=3$. Find $f^{\prime}(4)$.
7. Consider the function $h(x)=x^{4}-8 x^{2}+16$ on the interval $[-4,3]$. Find the absolute and local extrema of h on the interval $[-4,3]$ and where they occur. Classify each point as a minimum or maximum.
8. Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for x in the interval $[0,1]$. Hint: Can you express the area of this region in terms of the areas under the graphs of the two functions?
9. The velocity of a particle moving in a straight line is given by

$$
v(t)=3 t^{2}-24 t+36
$$

where t is in seconds and $v(t)$ is in meters per second.
(a) Find the time intervals in $[0,6]$ on which the particle is moving backwards and the intervals on which the particle is moving forwards.
(b) Find the displacement of the particle over the time interval $[0,6]$.
(c) Find the total distance traveled by the particle over the time interval $[0,6]$.
10. Find the number a such that the line $x=a$ bisects the area under the curve $y=1 / x^{2}$ with $1 \leq x \leq 4$.
11. Two cars start from an intersection at the same time. Car 1 travels north on a straight road at 20 mph and car 2 travels east on a straight road at 40 mph . Find the rate at which the distance between them is increasing after two hours.
12. Find $y(x)$ such that it satisfies the differential equation $y^{\prime}(x)=7 y(x)$ with the initial condition $y(0)=$ 15.
13. Consider the function

$$
A(x)=\int_{0}^{x} \sec ^{2}(t) \tan (t) d t
$$

Find the equation of the tangent line to the graph of $A(x)$ at $x=\pi / 4$.
14. Find the pair of positive numbers (x, y) satisfying $4 x+y=9$ that maximizes the function $M(x, y)=x^{2} y$.
15. If $f(x)=\tan (x)$ and $g(x)=2 x^{2}+x$, then find the derivative of $(f \circ g)(x)$.
16. Sketch the graph of an increasing function $f(x)$ such that both $f^{\prime}(x)$ and $A(x)=\int_{0}^{x} f(t) d t$ are decreasing.

